Heavy Flavor Production and Spectroscopy with CDF

Prabhakar Palni

(On behalf of the CDF Collaboration)

Department of Physics & Astronomy, University of New Mexico, USA

BEACH 2012 Wichita, Kansas, 23-28 July, 2012

Outline of the talk

- The Tevatron and the CDF II Detector
- Confirmation of the Bottom Baryon Resonance state Λ_b^{*0}
- Probing Quark Fragmentation
- Upsilon Spin Alignment

Statistics

- The Tevatron collided p with \bar{p} at 1.96TeV center of mass energy from 2001-2011
- Instantaneous Luminosity 4x10³²cm⁻²s⁻¹
- $\int \mathcal{L} dt \simeq 12.0 \, \text{fb}^{-1} \, \text{delivered}$
- $\int \mathcal{L} dt \simeq 10.0 \,\text{fb}^{-1}$ on tape, accessible for **CDF II**

CDF Detector

- Silicon Vertex Detector, Drift Chamber and TOF detector
- B=1.4T and 1.5σ separation between kaon and pion from TOF + dE/dX

Confirmation of the Bottom Baryon Resonance State Λ_b^{*0}

CDF Public Note 10900

Motivation

- Heavy hadrons are the "helium atoms of QCD" where the nucleus is the heavy quark Q and the two orbiting electrons are the light diquark qq
- Measurements of the masses and widths of the heavy baryons provide input to test different non-perturbative QCD approaches to the spectroscopy of bottom hadron states
 For example: Heavy Quark Effective Theory (HQET) and Lattice QCD
- Λ_b^{*0} is a resonance state containing the quarks b, u, and d. LHCb has recently observed this state with a signal significance greater than $5\sigma(arXiv:1205:3452[hep-ex])$
- Goal of the analysis: Search for the \varLambda_b^{*0} resonant state through its decay to $\varLambda_b^0\pi^+\pi^-$

Resonant States Decaying into Λ_b^0 Singlet

- Λ_{B}^{*0} , Orbital excitations: $J^{B} = (1/2)^{-}$ and $(3/2)^{-}$ (Strong decay)
- Λ_b^0 , Singlet state: $J^B = (1/2)^+$ (Weak-decay)
- pions $\pi^+\pi^-$ are soft and emitted in p-wave

Decay Chain of Λ_b^{*0}

Masses and Q-values of Λ_b^{*0} Resonance States

- $Q \equiv M(\Lambda_b^{*0} \to \Lambda_b^0 \pi^+ \pi^-)$ $M(\Lambda_b^0)$ $2m(\pi^\pm)$ i.e the amount of energy released by the decay reaction
- Various theoretical models predict that the mass of the first excited state Λ_b^{*0} , $(1/2)^-$ lies very close to the hadronic three-body mode threshold with Q=[20...47] MeV/ c^2
- The higher excited state, $\Lambda_b^{*0}(3/2)^-$ has Q \equiv [2...17] MeV/ c^2 higher than the lower state.

Two Displaced Track Trigger

b-Triggers at @1.96 TeV

- Enormous inelastic total crosssection of $\sigma_{
 m tot}^{
 m inel}\sim$ 60 mb
- $\sigma_{
 m b} pprox 20\,\mu{
 m b}\,(|\eta| < 1.0),$ @1.96 TeV
- Trigger on Hadronic Modes: CDF Two Track Trigger
 - Exploit long cτ (b-hadrons)
 - Trigger on ≥ 2 tracks with large |d₀|
 - p_T ≥ 2 GeV/c

Signal Model

We reconstruct Λ_b^{*0} candidates in the mass difference spectrum: Q-value

$$\mathsf{Q} = \mathsf{M}(\varLambda_b^{*0} o \varLambda_b^0 \pi^+ \pi^-)$$
 - $\mathsf{M}(\varLambda_b^0)$ - $\mathsf{2m}(\pi_{PDG}^\pm)$

- Mass resolution of Λ_b^0 and most of the systematic uncertainties cancel leaving only the $\pi_{soft}^+\pi_{soft}^-$ contribution.
- The signal is described by a double Gaussian to model detector resolution.
- Signal shape is fixed from the MC sample.
- The background is described by a second order Chebyshev polynomial.
- Q-value spectrum is obtained using full, Signal + Background model.
- Used high statistics CDF $D^{*+} \to D^0 \pi_{soft}^+$ sample to gauge the soft pion momentum scale for Λ_b^{*0} soft pion candidates.
 - Scale is adjusted by: $Q(\Lambda_h^{*0}) = Q(\Lambda_h^{*0}) 0.28 \text{ MeV}/c^2$

Analysis Criteria

- Exploit long life time and large mass of Λ_b^0
- $p_T(\Lambda_b^0) > 9.0 \,\text{GeV}/c$ (Large)
- $c\tau(\Lambda_h^0)/\sigma_{C\tau} > 6.0$
- $p_T(\pi_h^-) > 1 \text{ GeV}/c$
- $p_T(\pi_{soft}^{\pm}) > 0.2 \,\text{GeV}/c$
- $|d_0/\sigma_{d_0}|(\pi_{soft}^{\pm}) < 3.0$, w.r.t. primary VX.

Q-value spectrum of Λ_b^{*0}

The projection of the unbinned maximum LH fit onto the binned Q-value raw distribution of Λ_b^{*0} candidates

- Number of signal events
 = 17^{+5.3}/_{4.6}
- $Q(\Lambda_b^{*0}) = 20.68 \pm 0.35$ MeV/ c^2 , Q-value scale adjustment applied.

Significance of the Signal

Local Significance Estimate Based on Exp. Data Fits

- Signal + Background, H₁ (Signal Hypothesis).
- Background only, \mathcal{H}_0 (Null Hypothesis).
- D= $-2*In\frac{\mathcal{L}_1}{\mathcal{L}_0} = -2*\triangle(In\mathcal{L})$
- p-value is $2.28 * 10^{-6}$
- Significance of the signal is 4.6σ

Significance Estimated with toy MC expts.

- Generate Null Hypothesis \mathcal{H}_0 , fit with \mathcal{H}_1
- Parameter of interest , N_{cands}
- Signal position Q left floating within [6,50] MeV/c² search window
- Signal shape fixed
- Background shape floating
- p-value = $2.3 * 10^{-4}$ or 3.5σ

Systematic Uncertainties on Q-value

Source	Value, MeV/ c^2	Comment	
Momentum scale	± 0.28	propagated from high statistics calibration D^{*+} sample; 100% of the found adjustment value.	
Signal model	±0.11	MC underestimates the resolution; choice of the model's parameters	
MC resolution stat. uncertainty	± 0.012	finite MC sample size induces the stat. uncertainty of the shape parameters.	
Background model	± 0.03	consider 3-rd, 4-th power polynomials	
Total:	± 0.30	added in quadrature	

Summary of Results

To determine the absolute mass of the Λ_b^{*0}

• M $(\Lambda_b^0) = 5619.7 \pm 1.2(stat) \pm 1.2(syst) \text{ MeV/}c^2$

Measured Properties of the \varLambda_b^{*0} for $\int \mathcal{L} dt \simeq 10.0 \, \text{fb}^{-1}$

Value	$\mathrm{MeV}/\mathrm{c^2}$				
Q	$20.68 \pm 0.35 ({ m stat}) \pm 0.30 ({ m syst})$				
$\Delta { m M}$	$299.82 \pm 0.35 (\mathrm{stat}) \pm 0.30 (\mathrm{syst})$				
$M(\Lambda_b^{*0})$	$5919.5 \pm 0.35 (\mathrm{stat}) \pm 1.72 (\mathrm{syst})$				

CDF Public Note 10900

Probing Quark Fragmentation

CDF Public Note 10704

Quark Fragmentation

- Quark fragmentation models, string and cluster fragmentation
- D mesons offer solid and data based technique to validate these models
- Study charged particle production around heavy quarks
 - Kaons near D_s and D^+ both decaying to $\phi\pi$
 - Similar technique used by B_s flavor
- D used for fragmentation studies
 - No known resonances decay to D_sK
 - Charged D's do not mix
 - Select prompt D's to minimize contamination from B->DX decays

Probing Fragmentation

Charge Correlation between D and K

- For D_s^+ :
 - Opposite sign ⇒ early in fragmentation chain
 - Same sign ⇒ late in fragmentation chain
- For *D*+:
 - Random charge correlation

Methodology

• Prompt D_s^{\pm}/D^{\pm} mesons have ideally zero IP compared to finite IP of secondary components.

Methodology

Particle Identification Techniques

- Specific ionization per unit track length (dE/dX) in COT
- Time of Flight (TOF) of the particle measured in TOF sub-detector

10

Kaon Fraction Compared with Pythia and Herwig

Measure kaon fraction with likelihood fit

- Take maximum p_T tracks in \triangle R=0.7 cone around D candidates
- Kaon production around prompt D_s^{\pm} is enhanced compared to prompt D^{\pm} in the opposite sign combination

Kaon Fraction Compared with Pythia and Herwig

• Kaon production in the same sign combination is similar around prompt D_s^{\pm} and prompt D_s^{\pm}

Upsilon Spin Alignment

Phys. Rev. Lett. 108, 151802 (2012)

Upsilon spin-alignment

Discrepancies in previous Upsilon spin alignment study

- Differences between CDF and D0 results (Υ polarized?)
- Measurement of spin alignment in s-channel helicity frame only

Angular distribution of muons from Υ decays

$$\frac{d\Gamma}{d\Omega} \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\varphi} \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi$$

- Previous experiments have only measured λ_{θ}
 - Does not allow to calculate rotationally invariant quantities
 - ullet Bias could be introduced for non-uniform detector acceptance in ϕ
- This measurement is the first that determines the full 3D angular distribution

Invariant Mass Distribution of Dimuon events

- 550k Υ (1S), 150k Υ (2S), 76k Υ (3S) decaying into $\mu^+\mu^-$
- Background is dominated by muons from b-decays
- B enriched sample from displaced muons is used to model the angular distribution of the background
- Obtain geometric acceptance from MC sample
- Combined momentum resolution is $\sigma_{D_t}/p_t^2 \sim 0.07\%$

- First measurement of $\Upsilon(3S)$ parameters
- None of the 3 states shows evidence of polarization
- Verified with frame invariance crosschecks

• One-sigma confidence intervals for λ_{θ} and λ_{φ} for the $\Upsilon(3S)$ state

Comparison of rotationally invariant quantity, $\tilde{\lambda}$

Rotationally invariant quantity $\tilde{\lambda}$ in CS and SH frame $\tilde{\lambda}=\frac{\lambda_{\theta}+3\lambda_{\varphi}}{4}$

$$\tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\varphi}}{1 - \lambda}$$

• Comparison of $\lambda_{\theta}, \lambda_{\varphi}$ and $\lambda_{\theta\varphi}$ as a function of $p_{\mathcal{T}}$ for $\Upsilon(1S)$ state

• Comparison of $\lambda_{\theta}, \lambda_{\varphi}$ and $\lambda_{\theta\varphi}$ as a function of $p_{\mathcal{T}}$ for $\Upsilon(2S)$ state

• Comparison of $\lambda_{\theta}, \lambda_{\varphi}$ and $\lambda_{\theta\varphi}$ as a function of $p_{\mathcal{T}}$ for $\Upsilon(3S)$ state

Comparison with Theoretical Models

- Comparison of $\alpha \equiv \lambda_{\theta}$ for $\Upsilon(1S)$ decays in the SH frame
- Newer theoretical calculations have larger uncertainties

Summary and Conclusions

- The Λ_b^{*0} resonance is observed by the CDF at Q(Λ_b^{*0}) = 20.68 \pm 0.35 MeV/ c^2 with the significance of the signal 3.5 σ and the local signal significance of 4.6 σ
- Confirms one of the states recently observed by the LHCb Collaboration

- For opposite sign charge combination: kaon production around prompt D_s^{\pm} is enhanced compared to production around prompt D^{\pm}
- MCs are consistent in describing early production of kaons, but description of kaon production later in the fragmentation is inadequate

- First 3D measurement of $\Upsilon(3S)$ parameters
- No significant evidence of polarization for $\Upsilon(nS)$ over a wide range of p_T

Backup slides

\varSigma_*^{\pm} in CDF: PRD 85, 092011 (2012)

ullet Projections of angular variables measured in the CS and the SH frames for the range of invariant mass containing the $\Upsilon(1S)$ signal

 Comparisons of projected angular distributions measured in the CS frame for prompt and displaced (error bars) dimuon samples in the low-mass and high-mass sidebands

Systematic Uncertainties

- Momentum Scale: B field knowledge, uncertainty due to detector material on the dE/dx correction.
- Detector resolution model and its parameters.
 (Detector resolution is a critical parameter for our measurements especially for the fits of natural widths)
- Choice of the background model.
- Systematics propagated from the previous CDF measurement of the \varLambda_b^0 mass.

Theoretical Predictions of Masses and Q-value

References	$M(\Lambda_b^0)$	$M(\Lambda_b^{*0}, 1/2^-)$	Q	$M(\Lambda_b^{*0}, 3/2^-)$	Q
	MeV/c^2	$\tilde{\text{MeV}}/c^2$	MeV/c^2	MeV/c^2	MeV/c^2
Capstick [1]	5585	5912	47	5920	55
Karliner [2]	5619.7	5929	29	5940	40
Roberts [3]	5612	5939	47	5941	49
Garcilazo [4]	5625	5890	-15	5890	-15
Faustov [5]	5622	5930	28	5947	45
Zhang [6]	5690	5850	-120	5900	-70
Aziza B. [7]	5619.7	5920	20	5920	20

$$\bullet \ \ Q \equiv \mathsf{M}(\varLambda_b^{*0} \to \varLambda_b^0 \pi^+ \pi^-) - \mathsf{M}(\varLambda_b^0) - 2\mathsf{m}(\pi_{PDG}^\pm)$$

• The predicted masses for the first excited state lie very close to the hadronic three-body mode threshold with Q \equiv [20...47] MeV/ c^2 and for its higher excited state with only Q \equiv [2...17] MeV/ c^2 higher.

[1]S. Capstick, et al. Phys. Rev. D 34, 2809 (1986) [2]M. Karliner, et al., arXiv:0708.4027. [3]W. Roberts et al., Int. J. Mod. Phys. A 23, 2817 (2008) [4]H. Garcilazo, et al. J. Phys. G 34, 961 (2007) [5]D. Ebert, et al. Phys. Rev. D 72, 034026 (2005) [6]J. R. Zhang, et al. Phys. Rev. D 78, 094015 (2008) [7]Z. Aziza Baccouche et al. Nucl. Phys. A 696, 638 (2001)

References to the Predictions of Masses and Q-value

- [1]S. Capstick and N. Isgur, Phys. Rev. D **34**, 2809 (1986).
- [2]M. Karliner, B. Keren-Zur, H. J. Lipkin and J. L. Rosner, arXiv:0708.4027 [hep-ph].
- [3]W. Roberts and M. Pervin, Int. J. Mod. Phys. A **23**, 2817 (2008) [arXiv:0711.2492 [nucl-th]].
- [4]H. Garcilazo, J. Vijande and A. Valcarce, J. Phys. G **34**, 961 (2007) [arXiv:hep-ph/0703257].
- [5]D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D **72**, 034026 (2005) [arXiv:hep-ph/0504112].
- [6]J. R. Zhang and M. Q. Huang, Phys. Rev. D **78**, 094015 (2008) [arXiv:0811.3266 [hep-ph]].
- [7]C. K. Chow and T. D. Cohen, Nucl. Phys. A **688**, 842 (2001) [arXiv:hep-ph/0003131].

The Tevatron Accelerator at Fermilab near Chicago

